Use of Trimean in Theil-Sen Regression Analysis

نویسندگان

چکیده

Theil-Sen regression analysis is the most preferred method in non-parametric analysis. In method, calculations are made with median parameter. this study, it was proposed to calculate trimean parameter instead of way, effects outliers data on model fully reflected. applications one real-life and two simulation data, results obtained use were more successful. It recommended structures an excess outliers.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deming, Theil-Sen, and Passing-Bablock Regression

Least squares regression of y on x assumes that the x variate is measured without error, and minimizes the sum of squared vertical distance between the data points y and the fitted regression line. Regression of x on y minimizes the horizontal distances. Adcock [1] in 1878 suggested minimizing the sum of squared horizontal + vertical distances to the predicted values. However the idea of Adcock...

متن کامل

Theil-Sen Estimators in a Multiple Linear Regression Model

In this article, we propose the Theil-Sen estimators of parameters in a multiple linear regression model based on a multivariate median, generalizing the Theil-Sen estimator in a simple linear regression model. The proposed estimator is shown to be robust, consistent and asymptotically normal under mild conditions, and super-efficient when the error distribution is discontinuous. It can be chos...

متن کامل

Consistency and Asymptotic Distribution of the Theil-Sen Estimator

In this paper, we obtain the strong consistency and asymptotic distribution of the Theil-Sen estimator in simple linear regression models with arbitrary error distributions. We show that the Theil-Sen estimator is super-efficient when the error distribution is discontinuous and that its asymptotic distribution may or may not be normal when the error distribution is continuous. We give an exampl...

متن کامل

Multivariate Spatial U-Quantiles: a Bahadur-Kiefer Representation, a Theil-Sen Estimator for Multiple Regression, and a Robust Dispersion Estimator

A leading multivariate extension of the univariate quantiles is the so-called “spatial” or “geometric” notion, for which sample versions are highly robust and conveniently satisfy a Bahadur-Kiefer representation. Another extension of univariate quantiles has been to univariate U-quantiles, on the basis of which, for example, the well-known Hodges-Lehmann location estimator has a natural formula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of economic theory and analysis

سال: 2021

ISSN: ['2548-0707']

DOI: https://doi.org/10.25229/beta.827053